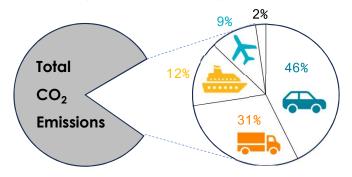


The Repsol Commitment Net Zero Emissions by 2050

Current sitation... Where do we go?

Primary energy demand estimation			
Year	EJ		
2023	615		
2025	630		
2030	650		
2035	680		
2050	575		



Maritime context in the emissions global arena

Shipping around 3% of global emissions (hard to abate)


IMO's check points:

Year	Target	Aim
2030	-20%	-30%
2040	-70%	-80%

Year	Aplicable regulation
2011	Compulsory adoption of efficiency regulation: EEDI (*) & SEEMP (**)
2013	EEDI & SEEMP come into force
2015	Phase 1 EEDI into force – 10% reduction in carbon intensity in new buildings
2016	IMO data collection system (DCS) and obligation to report consumed fuel
2018	IMO initial strategy to reduce GHG emissions
2019	First year of compulsory report of fuel consumption to IMO DCS
2020	Phase 2 EEDI into force – 20% reduction in carbon intensity in new buildings
2021	Actions for reducing carbon intensity 40% (@2030) vs 2008 (EEXI & CII)
2023	Phase 3 EEDI into force demanding up to 50% reductions in new buildings (containers)

(*): Energy Efficiency Design Index

(**): Ship Energy Efficiency Management Plan

Low carbon fuels for transportation

	Sustainable and Residue to biofuels fuel	Hydrogen and E-fuels		
	Renewable diesel, ETBE, Ethanol, FAME, BioLPG	E-diesel, e-gasoline,		
	Renewable diesel, FAME, Biomethane	hydrogen		
+	Biojet	E-jet , hydrogen		
	Biobunker, Renewable Diesel, biomethanol, biomethane	E-diesel , e-metanol		
	Bionaphtha y naphtha circular	E-Naphtha		
From	1998 2021	2026		

Repsol Renewable Fuels and Materials

Tech routes for alternative fuels

Route		WASTE USED	TECHNOLOGY	MARKET
Lipidic		Used cooking oil and lipidic residues from agriculture & farming	Hidrogenation	 Light Duty, Heavy Duty and Marine: HVO-renewable diesel Aviación: HEFA-SAF Biopropane y bionaphtha for petchem industry and hydrogen production
Biologic		OF-MSW, industrial organic waste Residues from agriculture and cattle	Anaerobic digestion y fermentation	 Biomethane for heavy industry, maritime, industrial and residential. Bioethanol for gasoline production and SAF. Fertilizers and biochar as by-prods
Thermo-chem		Municipal solid waste Agro residues	Gasification and pirolisis	 Renewable diesel for heavy duty and maritime Aviation: FT and ATJ Biopropane and bionaphtha for industria petchem industry and hydrogen production Renewable methanol for shipping and petchem
E-fuel	CO2	CO ₂ H ₂ O Renewable power	E- fuels	 E-naphtha for gasoline and for the petrochemical industry E-diesel for light and heavy transport and marine E-jet for aviation

What is Repsol doing in low carbon fuels?

Project	Technology	Feed Stock	Product	Capacity	Comments
C-43	HEFA	UCO & lipidic waste from agriculture & farming	HVO & SAF	350 kta	Mature tech. Limited feedstock avails
Ecoplanta	Gasification	Solid urban waste and Forrest residue	Methanol	250 kta	Two different grades. Doping with H_2 (colors).
Genia	Fermentation	Farming & agricultural residues	Biomethane	1,5 TWha	19 plants in progress (development phase)
PNOR-syn	E-tech	H ₂ & CO ₂	Gasoline	2,1 kta	100 MEUR investment
PNOR-pyr	Pyrolisis	Urban solid waste	Off-gas	10/100 kta	20 MEUR investment for phase 1
Electrolyzers	Electrolisys	Sun & water	H_2	Several ones	First electrolyzer alkready working in Bilbao (2,5 MW)

Thank you

