

Visions, challenges and trends Automotive Sector Propulsion systems

José Manuel Barrios jmbarrios@idiada.com

Introduction Societal changes

Challenge 1: Traffic congestion

Challenge 2: Pollution

Challenge 3: Liveability

NT111

10000

ALL PL

12

010

11

12220

2 14

12 3 3

Н

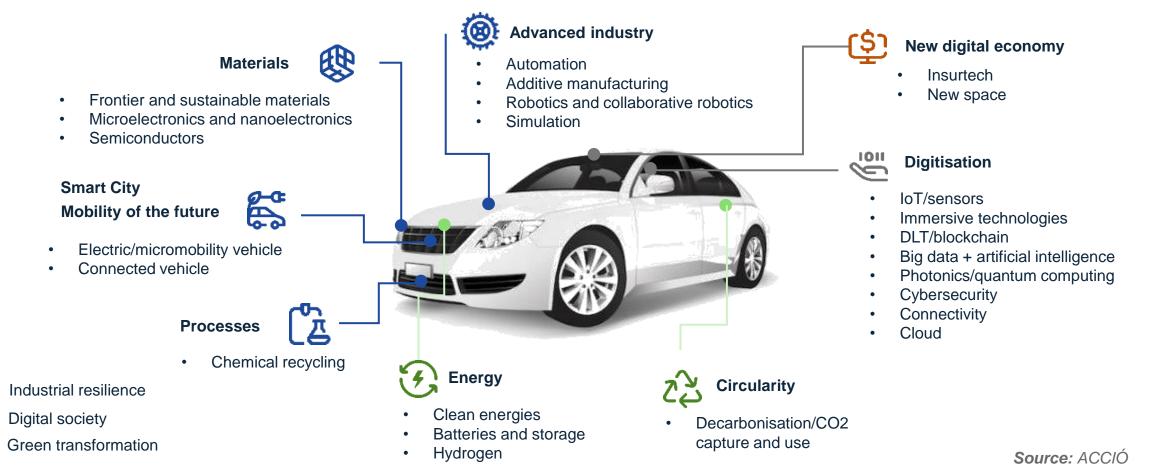
Introduction Automotive Challenges

What are the challenges of automotive engineering?

Safety Seamless mobility Sustainability

These challenges are not new

Introduction Technological solutions


What are the solutions?

Automation ctivity *y* efficiency Ene Sharing

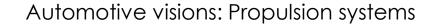
Technologies impacting the automotive industry

Recent technological trends, such as artificial intelligence, IoT and robotics, are applied in the automotive sector. These technological advances enable car companies to produce self-driving cars and offer multiple solutions. Some of these solutions include technologies associated with industrial resilience, digital society or green transformation.

Maturity			SHARED	
Technology Readiness	Technical focus shifts to provide superb driver experience	 No insurmountable technical hurdle to prevent introduction 	Connectivity/autonomy will boost sharing	 EV technology rivalling internal combustion engines decade(s) away
Ecosystem Infrastructure Readiness	New infrastructure players are expected to enter	 Standardized vehicle-to- everything infrastructure needs to be built 	New players will enter targeting integration	 Funding required to build charging infrastructure
Legal/Regulatory Framework Availability	Industrywide standards required for vehicle-to- everything protocols	• Liability exposure of stakeholders must be defined	 Consumer laws are missing for the sharing economy 	 Global standards are required for infrastructure
Profitable Business Model Availability	 Highest roadblock is prohibitive vehicle-to- everything investment 	Expect a few losers (taxi) but for many, game change	 No dominant business model yet; rental company joint ventures promising 	 Without step change in EV technology, no viable business model
Consumer Behavior	If no original equipment solution, customers opt for aftermarket ones	A number of consumer hurdles must be addressed	 Lower costs will put non- drivers in shared cars 	 Without subsidies, EVs attract limited buyers
Vehicle OEM Readiness	Choice of delivery strategy/platform, key for OEM	Luxury OEMs seem better positioned	 OEM experimenting outside business model will grow 	 EVs have potential to uproot the current business model

Maturity level O <25%

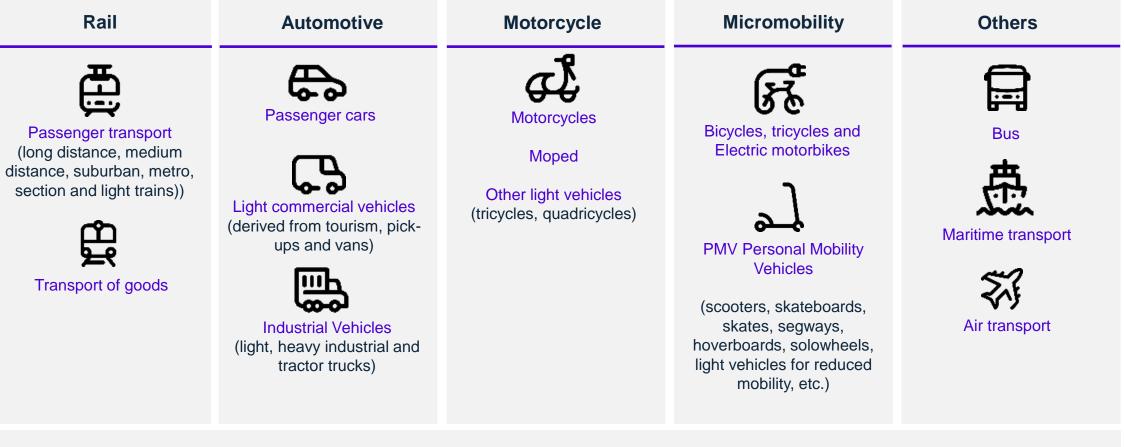
25 – 50%
50 – 75%


>75%

Source: AlixPartners, LLP

Introduction Moment of truth

GENERATION Z: CONNECTED FROM BIRTH.



Introduction Who we are?

15

The mobility sector, segmentation of the sector

Mobility services

Source: ACCIÓ and IDOM

Description of the automotive industry value chain

Technology and R&D centres

Associations, trade fairs and congresses

Universities and training centres

Source: ACCIÓ.

Roadmaps Electrification & energy eficiency

Impact on Industry: The new standards will likely require automotive manufacturers to develop and implement new technologies to meet these stricter limits.

Environmental Goals: This regulation aligns with broader EU efforts to improve air quality and reduce the environmental impact of transportation.

- New pollutants regulated
- Extension of the vehicle durability
- Introduction of durability requirements on electric and hybrid vehicles
- New testing procedure and particle emissions limits from brakes
- Intention to limit particle emissions from tyres (tyre abrasion)
- Control systems emissions on the vehicles: On Board Monitoring Systems
- Antitampering
- One legislation for both LDV and HDV

EXHAUST EMISSIONS FOR LIGHT DUTY VEHICLES

• New pollutant: **PN10** (particle size 10nm instead of the actual 23nm)

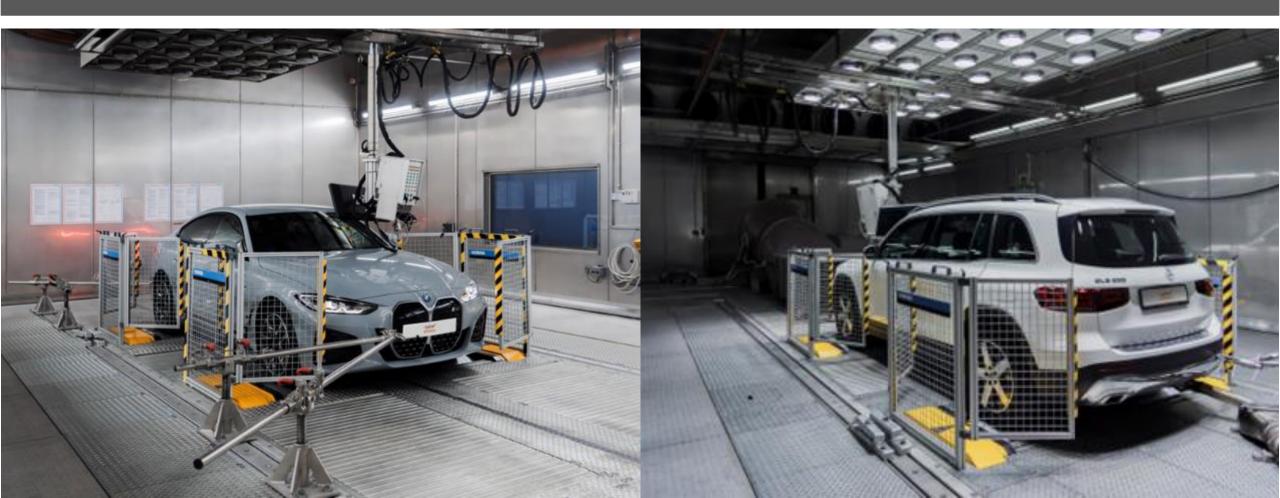
Same limits than EURO 6

Same limit than PN23 for the new PN10

- For Laboratory and RDE testing
- No changes in procedures

EVAPORATIVES EMISSIONS

- New limit
- No changes in procedures


	EURO 7	EURO6d
Hot soak + 2DD test	1,5 g	2 g

COLD EMISSIONS TYPE 6 (-7°C)

Applying to all powertrains: ICE, HEV and PEV

DURABILITY

• Extension vehicle durability (combustion engine):

Lifetime	M1, N1 and M2	
Main lifetime	Up to 160 000 km or 8 years	
Additional lifetime	Up to 200 000 km or 10 years	

• New requirement vehicle durability for battery vehicles (hybrids and electrics)

Minimum Performance Requirement

Battery energy capacity

(in vehicle battery durability)

Electric Range

80% - 5years or 100 kkm

72% - 5-8 years or 100-160 kkm

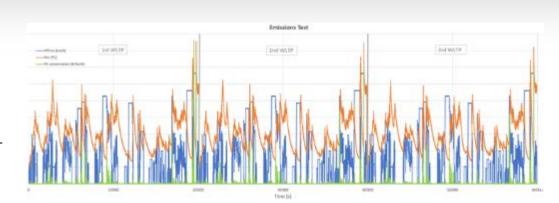
Declaration for the moment. TBD

PARTICLE EMISSIONS BRAKES

- Completely new procedure
- Test on component level for a vehicle limit level

 TPN_{10} , SPN_{10} and $\text{PM}_{2.5}$ limit TBD, for the moment only declaration

PM₁₀ limits (depending on powertrain):


- CE until 2034 ICE, as of 2035
- FCV & HEV until 2029
 FCV & HEV, as of 2030
- PEV until 2029 PEV as of 2030

7 mg/km TBD mg/km

7 mg/km TBD mg/km

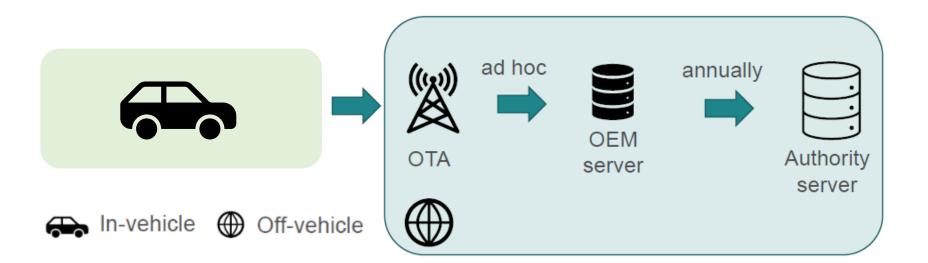
3 mg/km

TBD mg/km

PARTICLE EMISSIONS TYRES

• Completely new procedure

Tyre abrasión rate	
Limit (TBD)	


- Procedure under development on UNECE
- Initial proposal in UNR117, two options proposed:
 - Convoy method: on road testing in real driving conditions 8.000km. Reference vehicle with reference tyres included
 - Drum method: test to be performed on a special drum with special surface to test the tyre following a cycle during 5.000km equivalent

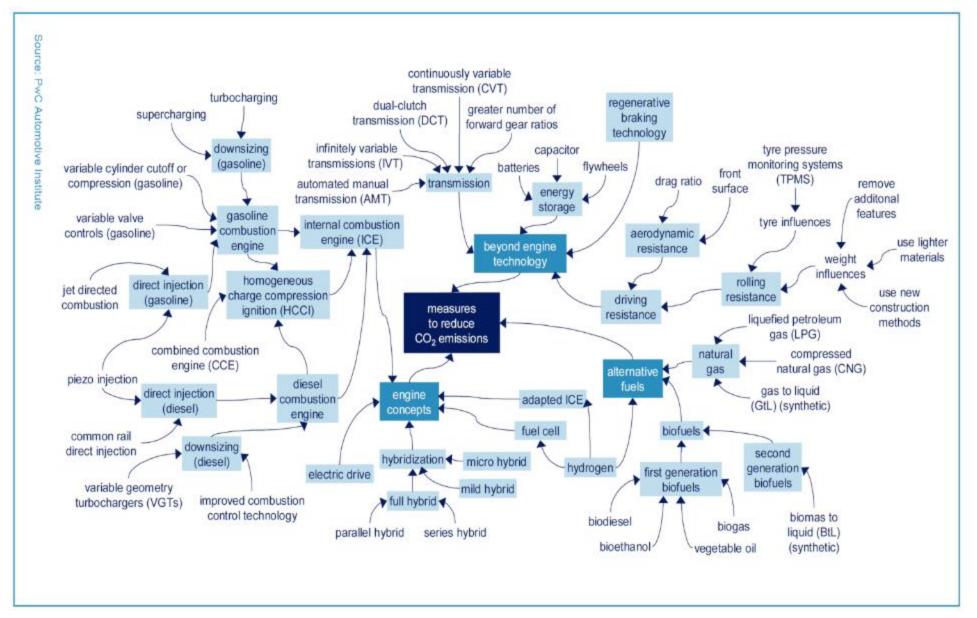
ON BOARD MONITORING

- New System
- OEM's compliance declaration and demonstration
- Monitoring of NOx & PM during vehicle useful life
- Final procedure and requirements under development

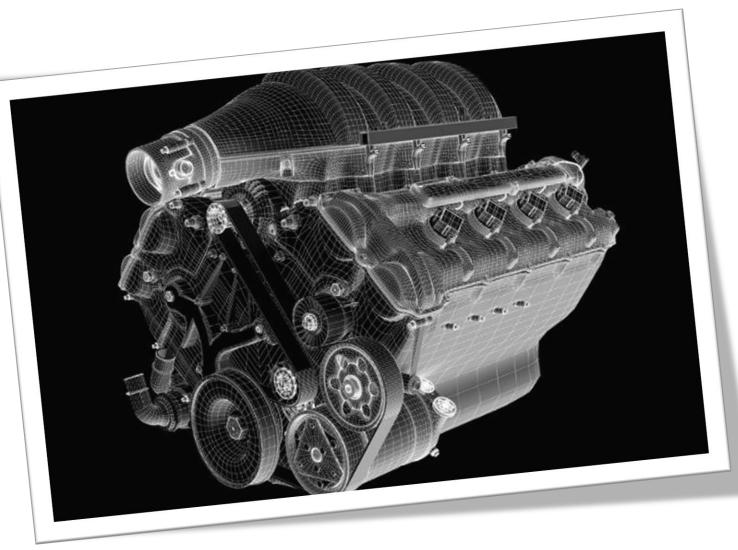
ANTITAMERING

• All proposals, stricter requirements during whole vehicle's life:

Manufacturers shall not design, construct and assemble vehicles with manipulation devices or manipulation strategies, which cause a non-compliant vehicle to appear compliant with this Regulation.


Manufacturers shall design, construct and assemble vehicles in such a way to minimise vulnerabilities, arising in all phases of their life-cycle, that may lead to tampering

POWERTRAIN


FLUID DYNAMICS LIGHTWEIGHT & WEIGHT MANAGEMENT ROLLING RESISTANCE

1.Internal Combustion Engines (ICE):a) Gasoline (Petrol) Engines:

- Use gasoline as fuel
- Operate on the Otto cycle
- Ignition via spark plugs
- Generally higher RPM and lower torque compared to diesel
- Common in passenger cars
- Pros: Responsive, quieter operation
- Cons: Lower fuel efficiency compared to diesel

1.Internal Combustion Engines (ICE):b) Diesel Engines:

- Use diesel fuel
- Operate on the Diesel cycle
- Compression ignition (no spark plugs)
- Higher torque at lower RPM
- Common in trucks, SUVs, and some passenger cars
- Pros: Better fuel efficiency, higher torque
- Cons: Higher emissions of particulate matter and NOx

1.Internal Combustion Engines (ICE):c) Compressed Natural Gas (CNG) Engines:

- Use natural gas stored in high-pressure tanks
- Can be dedicated CNG or bi-fuel (CNG and gasoline)
- Lower emissions compared to gasoline and diesel
- Pros: Cleaner burning, lower fuel costs
- Cons: Less widely available fuel infrastructure

1.Internal Combustion Engines (ICE):d) Liquefied Petroleum Gas (LPG) Engines:

- Use a mixture of propane and butane
- Often converted from gasoline engines
- Lower emissions than gasoline
- Pros: Lower fuel costs, cleaner burning
- Cons: Slightly lower power output, reduced trunk space due to fuel tank

1.Internal Combustion Engines (ICE):d) Liquefied Petroleum Gas (LPG) Engines:

- Use a mixture of propane and butane
- Often converted from gasoline engines
- Lower emissions than gasoline
- Pros: Lower fuel costs, cleaner burning
- Cons: Slightly lower power output, reduced trunk space due to fuel tank

1. Internal Combustion Engines (ICE):

e) Hydrogen Engines:

- Basic Concept: H2ICEs are similar to traditional gasoline engines but use hydrogen as fuel instead.
- Operation: Hydrogen is injected into the engine and ignited with a spark plug. The combustion process produces energy to power the vehicle.
- Key Features: Near-zero emissions (mainly water vapor). High efficiency due to hydrogen's wide flammability range. Potential for quick refueling
- Advantages: Significantly reduced carbon footprint, especially if hydrogen is produced from renewable sources. Utilizes existing engine manufacturing infrastructure
- Challenges: Hydrogen storage and distribution infrastructure. Lower energy density by volume compared to gasoline. Current hydrogen production methods are not always carbon-neutral
- Modifications: Adapted fuel injection and ignition systems. Materials chosen to prevent hydrogen embrittlement.
- Current Status: Less common than hydrogen fuel cell vehicles. Some ongoing research, particularly for heavy-duty applications

1.Definition:

• **Synthetic fuels** (synfuels) are liquid fuels produced from carbon, natural gas, or biomass. They are chemically engineered to mimic the properties of conventional fuels

2.Production Process:

- Fischer-Tropsch synthesis: Converts carbon monoxide and hydrogen into liquid hydrocarbons
- Methanol-to-gasoline process
- Direct fuel synthesis using renewable energy (Power-to-X)
- 3. Types of Synthetic Fuels:
 - Synthetic gasoline
 - Synthetic diesel
 - e-fuels (electrofuels)

4. Advantages:

- Can be used in existing internal combustion engines without modification
- Potential for lower emissions compared to conventional fossil fuels
- Can be produced using renewable energy sources
- Helps in energy security and reducing dependence on oil imports

- 5. Challenges:
 - 5. High production costs
 - 6. Energy-intensive manufacturing process
- 7. Competition with direct electrification in transport sector 6.Environmental Impact:
 - 1. Potential for carbon neutrality if produced using renewable energy and captured CO2
 - 2. Reduced particulate matter and sulfur emissions

7.Applications:

- 1. Automotive industry
- 2. Aviation (sustainable aviation fuels)
- 3. Shipping

8.Current Status:

- 1. Increasing interest from automotive and aviation industries
- 2. Pilot projects and small-scale production in several countries
- 3. Part of the EU's strategy for decarbonizing transport

9.Future Outlook:

- 1. Ongoing research to improve production efficiency and reduce costs
- 2. Potential role in hard-to-electrify sectors
- 3. Debates about their place in a carbon-neutral future

Automotive visions: Propulsion systems

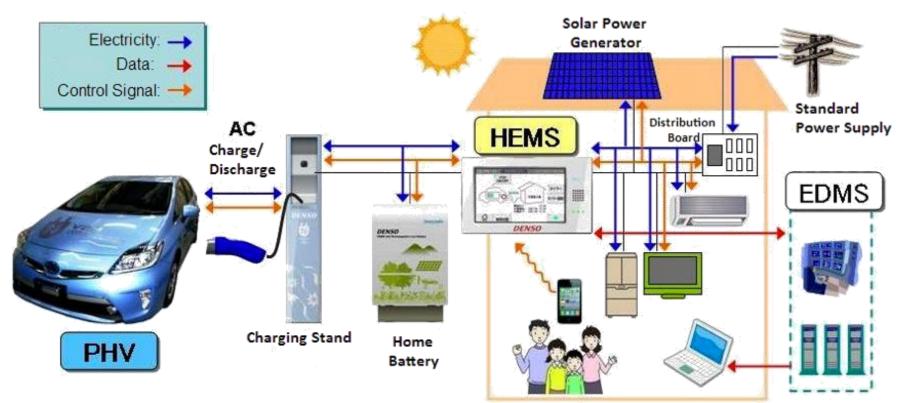
2. Electric Motors:

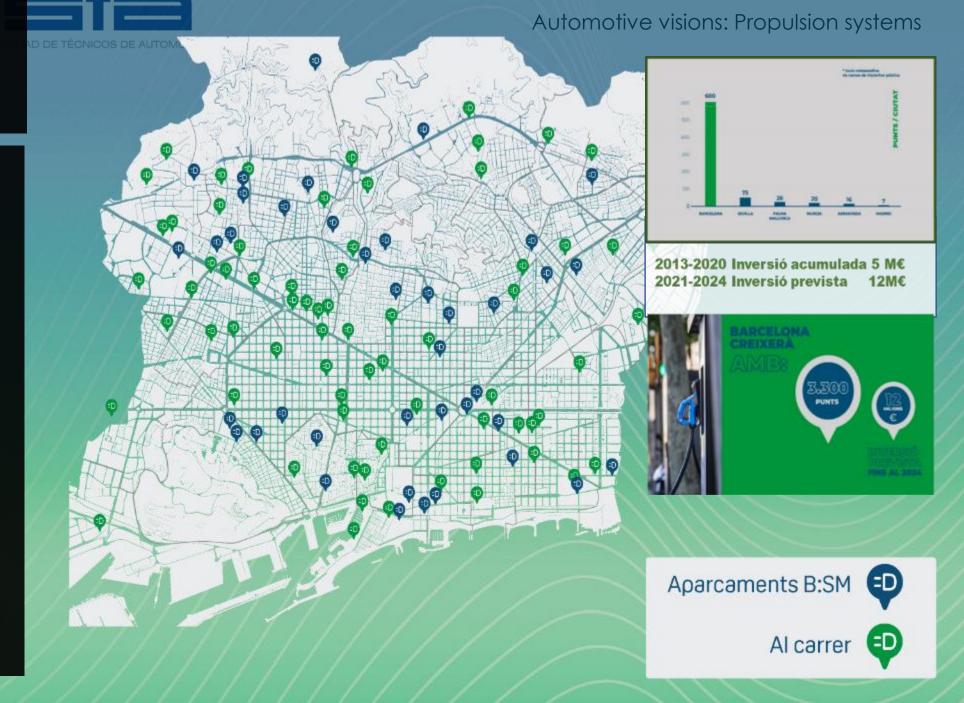
- Powered by electricity stored in batteries
- No direct emissions from the vehicle
- Use of regenerative braking to recover energy
- Pros: Zero direct emissions, quiet operation, low maintenance
- Cons: Limited range, longer refueling (charging) times, cost

Automotive visions: Propulsion systems

T

TESLA



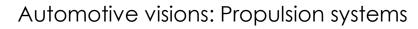


860 EVCS (8,6 EVCS/km2)

809 off street + 51 QC on street

1,26kW/eCar

+ 12.000 uses/month + 18.000 registered users



BUT !!! Increasing Demand needs x2 infrastructure every 2 years aprox.

- 3. Hybrid Powertrains:
- a) Conventional Hybrid:
 - Combines an internal combustion engine with an electric motor
 - Battery charged through regenerative braking and the ICE
 - Improved fuel efficiency over traditional ICE vehicles
 - Pros: Better fuel economy, especially in city driving
- Cons: More complex system, higher initial cost b) Plug-in Hybrid (PHEV):
 - Similar to conventional hybrid but with larger batteries
 - Can be charged from an external power source
 - Allows for short all-electric driving ranges
 - Pros: Combines benefits of electric and ICE vehicles
 - Cons: Higher cost, complexity

- 4. Hydrogen Fuel Cell:
 - Uses hydrogen to generate electricity, which powers an electric motor
 - Produces only water vapor as emission
 - Requires hydrogen refueling
 infrastructure
 - Pros: Zero emissions, quick refueling compared to battery electric
 - Cons: Limited hydrogen infrastructure, high production costs

2 cars models

Honda new model

Hyundai Nexo

Toyota Mirai

Automotive visions: Propulsion systems

Prototype buses

Trucks in

development

3 cars models

Honda Clarity FC

Mercedes e Citaro FC

IVECO E-WAY H2

lrizar i6S Efficent

Karsan eATA H2

Hyundai ELEC City FC

> 35 heavy duty models

Solaris Urbino 18 H2

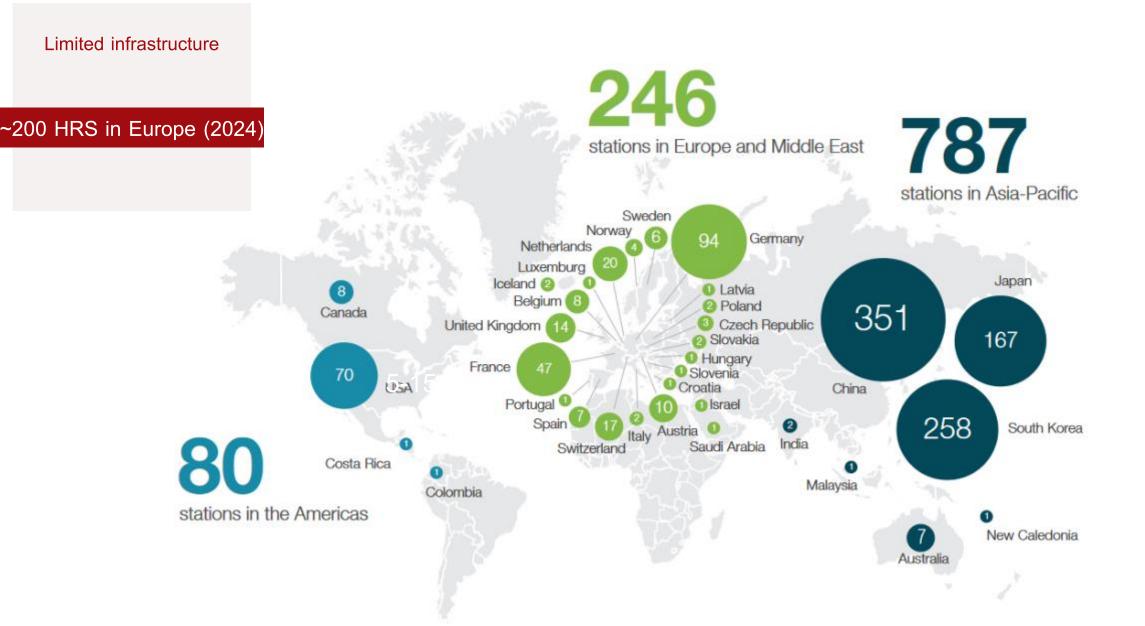
VanHool A12

VanHool Exqui. City18

Hyzon HYMAX

Hyzon HyHD8-200

Quantron QHM


Nicola Tre

2015

2024

5. Biofuel Engines:

- Can use fuels derived from organic materials
- Common biofuels include bioethanol and biodiesel
- Often blended with conventional fuels
- Pros: Renewable source, can reduce overall carbon emissions
- Cons: Potential competition with food crops, variable availability

Automotive visions: Propulsion systems

6. Compressed Air Engines:

- Use compressed air stored in tanks to power the engine
- Limited commercial applications
- Pros: Zero direct emissions, potential for quick refilling
- Cons: Limited range, energy losses in air compression

LIFE CYCLE ASSESSMENT (LCA)

1.LCA Overview:

- Evaluates environmental impact from production to end-of-life
- Considers: raw material extraction, manufacturing, use phase, and disposal/recycling

2.LCA Findings:

- BEVs: Lower use-phase emissions, higher production emissions
- ICE vehicles: Higher use-phase emissions, lower production emissions
- HEVs/PHEVs: Intermediate between ICE and BEV
- FCEVs: Dependent on hydrogen production method
- 3. Current European Regulations:
 - Euro 6d emission standards for ICE vehicles
 - CO2 emission targets for new car fleets
 - Incentives for low and zero-emission vehicles

- 4. Future European Regulations:
 - Euro 7 standards (from 2025): Stricter emission limits, including non-exhaust emissions
 - Proposed ban on new ICE vehicle sales by 2035
 - Emphasis on Well-to-Wheel and Life Cycle emissions LCA in Regulations:
 - Growing focus on full life cycle emissions in policy-making
 - Consideration of production and end-of-life impacts, not just tailpipe emissions
 - Push for sustainable battery production and recycling for EVs
- 5. Challenges:
 - Balancing immediate air quality concerns with long-term climate impact
 - Ensuring a clean energy mix for BEV benefits
 - Addressing emissions from tire and brake wear
- 6. Future Outlook:
 - Holistic approach combining LCA with air quality and climate goals
 - Potential regulations on battery production and recycling
 - Increased support for renewable energy in transport sector

Thank you very much for your attention